187 research outputs found

    Partial Root-Zone Drying of Olive (Olea europaea var. "Chetoui") Induces Reduced Yield under Field Conditions

    Get PDF
    The productivity of olive trees in arid and semi-arid environments is closely linked to irrigation. It is necessary to improve the efficiency of irrigation techniques to optimise the amount of olive fruit produced in relation to the volume of water used. Partial root-zone drying (PRD) is a water saving irrigation technique that theoretically allows the production of a root-to-shoot signal that modifies the physiology of the above-ground parts of the plant; specifically reducing stomatal conductance (gs) and improving water use efficiency (WUE). Partial root-zone drying has been successfully applied under field conditions to woody and non-woody crops; yet the few previous trials with olive trees have produced contrasting results. Thirty year-old olive trees (Olea europaea ā€˜var. Chetouiā€™) in a Tunisian grove were exposed to four treatments from May to October for three-years: ā€˜controlā€™ plants received 100% of the potential evapotranspirative demand (ETc) applied to the whole root-zone; ā€˜PRD100ā€™ were supplied with an identical volume of water to the control plants alternated between halves of the root-zone every ten-days; ā€˜PRD50ā€™ were given 50% of ETc to half of the root-system, and; ā€˜rain-fedā€™ plants received no supplementary irrigation. Allowing part of the root-zone to dry resulted in reduced vegetative growth and lower yield: PRD100 decreased yield by ~47% during productive years. During the less productive years of the alternate bearing cycle, irrigation had no effect on yield; this suggests that withholding of water during ā€˜off-yearsā€™ may enhance the effectiveness of irrigation over a two-year cycle. The amount and quality of oil within the olive fruit was unaffected by the irrigation treatment. Photosynthesis declined in the PRD50 and rain-fed trees due to greater diffusive limitations and reduced biochemical uptake of CO2. Stomatal conductance and the foliar concentration of abscisic acid (ABA) were not altered by PRD100 irrigation, which may indicate the absence of a hormonal root-to-shoot signal. Rain-fed and PRD50 treatments induced increased stem water potential and increased foliar concentrations of ABA, proline and soluble sugars. The stomata of the olive trees were relatively insensitive to super-ambient increases in [CO2] and higher [ABA]. These characteristics of ā€˜hydro-passiveā€™ stomatal behaviour indicate that the ā€˜Chetouiā€™ variety of olive tree used in this study lacks the physiological responses required for the successful exploitation of PRD techniques to increase yield and water productivity. Alternative irrigation techniques such as partial deficit irrigation may be more suitable for ā€˜Chetouiā€™ olive production.This work was supported by the Ministero dellā€™Istruzione, dellā€™UniversitĆ  e della Ricerca of Italy: PRIN 2010ā€“2011 ā€œPRO-ROOTā€ and Progetto Premiale 2012 ā€œAquaā€. MH acknowledges funding from a Marie Curie IEF (2010ā€“275626). We are grateful to Dr Mohamed Ghrab (Olive Tree Institute) for technical assistance and scientific discussion. The comments of Georgios Koubouris (Hellenic Agricultural Organization) and two anonymous reviewers significantly improved this manuscript

    Opportunities and limitations of crop phenotyping in southern european countries

    Get PDF
    ReviewThe Mediterranean climate is characterized by hot dry summers and frequent droughts. Mediterranean crops are frequently subjected to high evapotranspiration demands, soil water deficits, high temperatures, and photo-oxidative stress. These conditions will become more severe due to global warming which poses major challenges to the sustainability of the agricultural sector in Mediterranean countries. Selection of crop varieties adapted to future climatic conditions and more tolerant to extreme climatic events is urgently required. Plant phenotyping is a crucial approach to address these challenges. High-throughput plant phenotyping (HTPP) helps to monitor the performance of improved genotypes and is one of the most effective strategies to improve the sustainability of agricultural production. In spite of the remarkable progress in basic knowledge and technology of plant phenotyping, there are still several practical, financial, and political constraints to implement HTPP approaches in field and controlled conditions across the Mediterranean. The European panorama of phenotyping is heterogeneous and integration of phenotyping data across different scales and translation of ā€œphytotron researchā€ to the field, and from model species to crops, remain major challenges. Moreover, solutions specifically tailored to Mediterranean agriculture (e.g., crops and environmental stresses) are in high demand, as the region is vulnerable to climate change and to desertification processes. The specific phenotyping requirements of Mediterranean crops have not yet been fully identified. The high cost of HTPP infrastructures is a major limiting factor, though the limited availability of skilled personnel may also impair its implementation in Mediterranean countries. We propose that the lack of suitable phenotyping infrastructures is hindering the development of new Mediterranean agricultural varieties and will negatively affect future competitiveness of the agricultural sector. We provide an overview of the heterogeneous panorama of phenotyping within Mediterranean countries, describing the state of the art of agricultural production, breeding initiatives, and phenotyping capabilities in five countries: Italy, Greece, Portugal, Spain, and Turkey. We characterize some of the main impediments for development of plant phenotyping in those countries and identify strategies to overcome barriers and maximize the benefits of phenotyping and modeling approaches to Mediterranean agriculture and related sustainabilityinfo:eu-repo/semantics/publishedVersio

    Effect of Ventilation Rate on Instilled Surfactant Distribution in the Pulmonary Airways of Rats

    Get PDF
    Liquid can be instilled into the pulmonary airways during medical procedures such as surfactant replacement therapy, partial liquid ventilation, and pulmonary drug delivery. For all cases, understanding the dynamics of liquid distribution in the lung will increase the efficacy of treatment. A recently developed imaging technique for the study of real-time liquid transport dynamics in the pulmonary airways was used to investigate the effect of respiratory rate on the distribution of an instilled liquid, surfactant, in a rat lung. Twelve excised rat lungs were suspended vertically, and a single bolus (0.05 ml) of exogenous surfactant (Survanta, Ross Laboratories, Columbus, OH) mixed with radiopaque tracer was instilled as a plug into the trachea. The lungs were ventilated with a 4-ml tidal volume for 20 breaths at one of two respiratory rates: 20 or 60 breaths/min. The motion of radiodense surfactant was imaged at 30 frames/s with a microfocal X-ray source and an image intensifier. Dynamics of surfactant distribution were quantified for each image by use of distribution statistics and a homogeneity index. We found that the liquid distribution depended on the time to liquid plug rupture, which depends on ventilation rate. At 20 breaths/min, liquid was localized in the gravity-dependent region of the lung. At 60 breaths/min, the liquid coated the airways, providing a more vertically uniform liquid distribution

    The correlation between reading and mathematics ability at age twelve has a substantial genetic component

    Get PDF
    Dissecting how genetic and environmental influences impact on learning is helpful for maximizing numeracy and literacy. Here we show, using twin and genome-wide analysis, that there is a substantial genetic component to childrenā€™s ability in reading and mathematics, and estimate that around one half of the observed correlation in these traits is due to shared genetic effects (so-called Generalist Genes). Thus, our results highlight the potential role of the learning environment in contributing to differences in a childā€™s cognitive abilities at age twelve

    Hen Harrier Circus cyaneus nest sites on the Isle of Mull are associated with habitat mosaics and constrained by topography

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Bird Study on 07/02/2018, available online: http://www.tandfonline.com/doi/full/10.1080/00063657.2017.1421611Capsule: Hen Harrier on the Isle of Mull, UK, are associated with habitat mosaics consisting of moorland, scrub and forestry but avoid grazed land, suggesting that forested habitats could be managed sympathetically for Hen Harrier in the future should the current UK population increase. Aims: To use distribution modelling to investigate nesting habitat associations using a long term dataset for Hen Harrier on Mull. Methods: We develop area-interaction models using a LASSO penalty to explore the distribution of 102 Hen Harrier nest sites in relation to habitat and topography. Our model is then successfully validated in tests using data for 70 nest sites from subsequent years. Results: Our model is effective in predicting suitable areas for Hen Harrier nest sites and indicates that Hen Harriers on Mull are found in habitat mosaics below 200 m asl. Hen Harrier nest intensity is positively associated with increasing proportions of moorland and scrub, open canopy forestry and closed canopy forestry. Nest intensity is negatively associated with increasing proportions of grazed land. Conclusion: Hen Harrier avoid grazed areas but are relatively tolerant of other habitat combinations. These findings are supported by previous observations of Hen Harrier habitat use and have implications for the recovery of some Hen Harrier SPA populations and future forest management. Open canopy forest and forest mosaics could potentially be incorporated into landscape-scale conservation plans for Hen Harriers using the population in Mull as an example

    XUE. Molecular inventory in the inner region of an extremely irradiated Protoplanetary Disk

    Full text link
    We present the first results of the eXtreme UV Environments (XUE) James Webb Space Telescope (JWST) program, that focuses on the characterization of planet forming disks in massive star forming regions. These regions are likely representative of the environment in which most planetary systems formed. Understanding the impact of environment on planet formation is critical in order to gain insights into the diversity of the observed exoplanet populations. XUE targets 15 disks in three areas of NGC 6357, which hosts numerous massive OB stars, among which some of the most massive stars in our Galaxy. Thanks to JWST we can, for the first time, study the effect of external irradiation on the inner (<10< 10 au), terrestrial-planet forming regions of proto-planetary disks. In this study, we report on the detection of abundant water, CO, CO2_2, HCN and C2_2H2_2 in the inner few au of XUE 1, a highly irradiated disk in NGC 6357. In addition, small, partially crystalline silicate dust is present at the disk surface. The derived column densities, the oxygen-dominated gas-phase chemistry, and the presence of silicate dust are surprisingly similar to those found in inner disks located in nearby, relatively isolated low-mass star-forming regions. Our findings imply that the inner regions of highly irradiated disks can retain similar physical and chemical conditions as disks in low-mass star-forming regions, thus broadening the range of environments with similar conditions for inner disk rocky planet formation to the most extreme star-forming regions in our Galaxy.Comment: Accepted for publication in ApJ Letters. 20 pages, 7 figure

    Silencing Nociceptor Neurons Reduces Allergic Airway Inflammation

    Get PDF
    Lung nociceptors initiate cough and bronchoconstriction. To elucidate if these fibers also contribute to allergic airway inflammation, we stimulated lung nociceptors with capsaicin and observed increased neuropeptide release and immune cell infiltration. In contrast, ablating Nav1.8(+) sensory neurons or silencing them with QX-314, a charged sodium channel inhibitor that enters via large-pore ion channels to specifically block nociceptors, substantially reduced ovalbumin- or house-dust-mite-induced airway inflammation and bronchial hyperresponsiveness. We also discovered that IL-5, a cytokine produced by activated immune cells, acts directly on nociceptors to induce the release of vasoactive intestinal peptide (VIP). VIP then stimulates CD4(+) and resident innate lymphoid type 2 cells, creating an inflammatory signaling loop that promotes allergic inflammation. Our results indicate that nociceptors amplify pathological adaptive immune responses and that silencing these neurons with QX-314 interrupts this neuro-immune interplay, revealing a potential new therapeutic strategy for asthma

    Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis

    Get PDF
    National Institutes of Health grants GM-38765 and P50-DE016191 (C.N.S.), Welcome Trust Programme grant 086867/Z/08/Z (R.J.F. and M.P.) and Project grant 085903/Z/08 (R.J.F.) and Arthritis Research Campaign UK fellowships 18445 and 18103 (to L.V.N. and D.C., respectively). M.S. received a National Research Service Award from the NHLBI (HL087526)

    Mosaic structural variation in children with developmental disorders

    Get PDF
    Delineating the genetic causes of developmental disorders is an area of active investigation. Mosaic structural abnormalities, defined as copy number or loss of heterozygosity events that are large and present in only a subset of cells, have been detected in 0.2ā€“1.0% of children ascertained for clinical genetic testing. However, the frequency among healthy children in the community is not well characterized, which, if known, could inform better interpretation of the pathogenic burden of this mutational category in children with developmental disorders. In a caseā€“control analysis, we compared the rate of large-scale mosaicism between 1303 children with developmental disorders and 5094 children lacking developmental disorders, using an analytical pipeline we developed, and identified a substantial enrichment in cases (odds ratio = 39.4, P-value 1.073e āˆ’ 6). A meta-analysis that included frequency estimates among an additional 7000 children with congenital diseases yielded an even stronger statistical enrichment (P-value 1.784e āˆ’ 11). In addition, to maximize the detection of low-clonality events in probands, we applied a trio-based mosaic detection algorithm, which detected two additional events in probands, including an individual with genome-wide suspected chimerism. In total, we detected 12 structural mosaic abnormalities among 1303 children (0.9%). Given the burden of mosaicism detected in cases, we suspected that many of the events detected in probands were pathogenic. Scrutiny of the genotypicā€“phenotypic relationship of each detected variant assessed that the majority of events are very likely pathogenic. This work quantifies the burden of structural mosaicism as a cause of developmental disorders
    • ā€¦
    corecore